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Abstract--The equations describing the radial encroachment of a viscous liquid into a homogeneous, 
anisotropic porous medium are formulated and solved by two approximate methods. An analytical 
approximation is in good agreement with a finite element numerical solution, provided the angular 
component of the pressure gradient in an elliptical coordinate system is small. In the specific case where 
one of the principal flow directions is perpendicular to the flow plane, treatment of experimental flow data 
in accord with the analytical approximation determines the principal in-plane permeabilities and the 
degree of in-plane anisotropy. In the general case, the analysis yields effective permeabilities that are 
functions of the principal permeabilities and the orientation of the principal coordinate system. 

I N T R O D U C T I O N  

A porous medium is anisotropic with respect to fluid flow if the directions of  the superficial fluid 
velocity and the imposed pressure gradient generally differ. Then the permeability, as defined for 
inertialess flows by Darcy's law, is directionally dependent. Anisotropy is distinct from the spatial 
variation of  permeability caused by nonuniformities or heterogeneities. Examples of  anisotropic 
media include naturally occurring oil sands and rock formations and fabricated materials such 
as textiles. Flow anisotropies in these materials reflect structural anisotropies. Preferred grain 
orientation in geological formations is responsible for the directional variation in flow resistance. 
Similarly, preferred fiber orientation in nonwoven fabrics and constructional characteristics of  
woven and knit fabrics are the major structural anisotropies of  these materials. 

The fluid flow conductance of  an anisotropic medium is described in terms of  a permeability 
tensor, k, which relates components of  the fluid velocity to components of  the pressure gradient. 
Diagonalization of  this tensor, assumed symmetric, defines the principal flow directions of  the 
medium, characterized by the principal permeabilities, kl, k2 and k3. Often, a porous medium is 
only two-dimensionally anisotropic and two permeabilities suffice. For  example, the idealized case 
of  a linear fibrous network comprised of  infinitely long parallel circular cylinders is characterized 
by a permeability parallel to the cylinder axis and a single permeability in the perpendicular 
direction (e.g. Neale 1977). 

Anisotropic permeabilities are quantified by measuring components of  the pressure drop and 
superficial velocity in one or more flow directions. Usually, one of  the principal flow directions is 
assigned by physical arguments before the experiments are performed. The direction perpendicular 
to the bedding plane of  an oil sandstone or a planar fibrous material is typically considered as one 
of  the three principal flow directions. In these cases, experiments are usually limited to quantifying 
the permeability transverse to the plane and to identifying the in-plane principal flow directions 
and permeabilities. Clearly, the in-plane principal permeability determinations present the most 
difficulty because the in-plane principal flow directions are not known. 

Steady, unsteady and pseudo-steady-state methods have been developed to measure directional 
permeabilities (e.g. Rice et  al. 1970; Bear 1972). In the majority of  cases, the flow geometry is linear 
and allows only a single directional measurement on a given test specimen. A new test specimen 
must be cut or the sample rotated to test other directions. Rose (1982) presented a one-dimensional 
flow technique that requires just two test specimens to quantify two-dimensional principal flow 
directions and permeabilities. In this method, the endface angles of  two cylindrical core specimens 
are altered in a trial-and-error manner until all streamlines are parallel to the core axes and all 
equipotential surfaces are parallel to the endfaces. The angles that the endfaces make with the core 
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axis define the principal flow directions and allow calculation of the principal permeabilities. 
Although requiring only two test specimens, the method generally requires more than two flow 
measurements. 

Only a few permeability measuring methods have used two-dimensional flows. Johnson & 
Hughes (1948) developed a two-dimensional radial flow apparatus which utilized a single hollowed 
cylindrical test specimen. Gas flowed radially under a fixed driving pressure from the hollowed core 
to the outer radius of the specimen. There, a moveable gas collection head determined the 
volumetric flow rate as function of in-plane angle. Fontugne (1969) measured the principal 
permeabilities of unconsolidated porous media in a rectangular flow cell by matching the ratio of 
horizontal and vertical flows with a numerical solution of the governing equations. 

The superficial velocity and pressure gradient vectors are collinear only in the principal flow 
directions. In these directions the permeability is unique and equal to one of the principal 
permeabilities. In directions other than the principal flow directions, the permeabilities are not 
simply related to components of the permeability tensor (Scheidegger 1960; Marcus 1962; Dullien 
1979). In the absence of a consistent theory, directional permeability data are typically plotted as 
k 1/2 or k -1/2 vs in-plane angle and statistically fit to an ellipse. The semimajor and semiminor axes 
of the ellipse define the principal flow directions. 

Although straightforward in their application, the methods presented to date to measure 
directional permeabilities have been hindered by several common problems. The most severe 
problem is the large number of individual measurements and specimens required to uniquely 
quantify the directional permeabilities and the principal flow directions, even for two-dimensional 
anisotropies. Also, many of the experimental systems, especially the one-dimensional linear flows 
are subject to channelling and boundary effects. Finally, if nonuniformities are present in the 
system, there is no simple way to determine whether the variation in directional permeability is 
due to pure anisotropy or to nonuniformities and heterogeneities (Greenkorn et al. 1964). 

Recently, we demonstrated the feasibility of monitoring the radial encroachment of a viscous 
liquid into a planar porous medium (Adams et al. 1986). In this situation, the in-plane anisotropy 
dictates the shape of the advancing fluid front and the directional permeabilities determine the rate 
of penetration for a given driving pressure and fluid viscosity. In this paper, we derive the equations 
which predict the radial advancement of a fluid into a planar porous medium under pseudo-steady- 
state flow conditions. Using these equations, we show how to define directional in-plane 
permeabilities and the directions of the principal axes from a single experiment on a single test 
specimen. 

THEORY 

The radial penetration of liquid into a homogeneous, anisotropic porous medium is depicted in 
figure 1. At t = 0, liquid begins entering the porous material from a cylindrical boundary of radius 
R0 at pressure P0. At a later time, t, the moving front resembles an ellipse characterized by 
maximum and minimum radial extents. Rf~ and Rf2, and orientation, 0, relative to a laboratory 
coordinate system. The pressure at the moving front is Pf. The characteristic properties of the 
medium are the porosity, c, and the thickness, h, which is large enough to neglect any flow 
resistance due to the boundaries, yet small enough to minimize gravitational effects. The spreading 
process is considered pseudo-steady if the process time scale is large with respect to the microscopic 
time scale for momentum transfer (Whitaker 1970) and the time scale of compressibility effects 
(Greenkorn 1983). Since the displaced fluid is air, the interface is unconditionally stable due to a 
favorable viscosity ratio and flow direction (Wilson 1975; Paterson 1981). Although a finite surface 
tension exists at the flow front, surface wettability forces are assumed small in comparison to the 
external driving force. 

The equations describing the fluid motion are the continuity equation for incompressible flow, 

V'vo = 0 [1] 

and the tensorial form of Darcy's law, 

- k . V P  
V o -  - -  ; [ 2 ]  

~t 
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Figure 1. Radial penetration of liquid into a homogeneous, anisotropic porous medium. 

v0 is the superficial velocity vector and / t  is the viscosity of the penetrating liquid. If  one of  the 
principal flow directions is perpendicular to the flow plane, combining [1] and [2] in a coordinate 
system, (xl, x2), corresponding to the in-plane principal flow directions, gives 

O2p 02p 
+ = o .  [31 

Principal permeabilities, kl and k2, determine ~ = k2/k l ,  the in-plane degree of  anisotropy. 
For a principal coordinate system with arbitrary orientation with respect to the flow plane, [3] 

is still valid provided directions 1 and 2 are identified as effective principal flow directions with 
permeabilities k~ n and k~ rr and h/Rr<< 1 to ensure a nearly uniform flow cross-section. The effective 
permeabilities are functions of  the principal permeabilities and the orientation of  the principal 
coordinate system: 

k] fr = k, l 2 + kl  m2 + k3n 2 [4] 

and 

kg fr = kl l 2 + k2 m2 + k3 n2. [5] 

In these equations, 1~, m~ and n~ are the direction cosines of principal flow directions 1, 2 and 3 with 
the ith direction of  the in-plane coordinate system. 

The boundary conditions associated with [3] are 

P = Po at  ~ 2 = XI-~  X 2 R20 [6] 

P = Pf at Rr(Xl,X2, t). [7] 

Furthermore, a kinematic condition imposed at the moving front requires that the boundary 
propagate with the local fluid velocity 

dxr = 
Vf = d t  Rf [8] 

Solving [3] for the pressure distribution, substituting the distribution into [2] and evaluating this 
equation at the moving front determines the superficial frontal velocity vector. Substitution into 
[8] generates the differential equations which predict the time evolution of  the advancing liquid 
front. 

Moving boundary problems of  this type require that the shape of  the interface be known from 
symmetry conditions or be obtained as part of  the solution. If the problem is linearly, radially or 
spherically symmetric, an exact, analytic solution is possible. In most other cases, numerical 
techniques or analytic approximations are required (Wilson et al. 1978). 
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ISOTROPIC S O L U T I O N  

The radially symmetric case of this analysis occurs when k 2 = k~ = k, i.e. the porous medium is 
isotropic within the plane. Then the fluid front is macroscopically circular and the pressure varies 
only radially according to 

P - -  P f  P -- Pr 1 [9] 
- 

The radial component of the superficial velocity vector evaluated at R = Rr gives 

kAP 1 
- -  • [101 

D0rlRf-- /'~ R r l n ( - ~ )  

The differential equation generated by the kinematic condition is 

dRf kAP 1 
- I l l ]  

dt ,/~ Rr ln(--~) 

with the initial condition 

R f  = R o at t = 0. [12] 

The dimensionless solution of  [11] and [12] is 

p~(2 In P r -  1) + 1 = 4~,  [13] 

where p f=  Rr/Ro is the dimensionless radial extent and q~ = kAPt/EI~R~ is a dimensionless time 
which fully accounts for the experimental variables in the system. Equation [13] predicts the radial 
encroachment of  a liquid into a homogeneous, isotropic porous medium. 

A N I S O T R O P I C  SOLUTION 

When k2 4: kl, the porous medium is anisotropic within the plane and the shape of the flow front 
is not evident from the problem geometry. Prior to an approximate solution, it is useful to 
transform [3] to Laplace's equation by scaling as (Kucuk & Brigham 1979; Greenkorn 1983) 

X~ = XI ~1/4, [14] 

X2 = X20~--I/4 [15] 

and 

to obtain 

with the boundary conditions 

and 

p - P f  
P '  - - -  [161 

AP ' 

O 2 p "  0 2 p  ' 

0x, 2 + ~ = 0 [171 

x~ 2 x~ 2 
P ' = I  at - - - ~ + - - : ~ = R o  z [18] 

P ' = 0  at R~(x'l,x~,t). [19] 
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Physically, this scaling has shifted the anisotropy of the problem to the geometry of the inlet hole. 
Flow from a circular boundary into an anisotropic medium has been transformed into flow from 
an elliptical boundary into an isotropic medium of permeability [~ = (kl k2) I/2. The semimajor and 
semiminor axes of the inlet hole are R0 ~- i/4 and R0~ 1/4, respectively, so that as ~ ~ 1 the inlet hole 
returns to a circle. 

Since the inner boundary is an ellipse, an elliptical coordinate system is natural for attempting 
a solution. The relationship between elliptical coordinates ~ and r/and rectangular coordinates x~ 
and x~ is (figure 2) 

and 

x~ = L sinh ~ sin r/ [20] 

x~ = L cosh ~ cos q, [21] 

where L is one half the focal length of the entrance ellipse, i.e. 

L = Ro(~ -1/2 _ o~ I/2)1/2. [22] 

Lines of constant ~ and q form families of confocal ellipses and hyperbolas, respectively. In this 
coordinate system, [17]-[19] become 

O2p , O2p, 
2 = 0 [231 

P ' = I  at ¢ = 4 0  [24] 

and 

P ' = 0  at R~(~,q,t) ,  [25] 

respectively. The elliptical equivalent of the inlet boundary, ~0, is only a function of ~ given by 

I1  "~- O[ l/2 ] 
~0 = In (i- -- ~-~i72j' [26] 

Darcy's law in elliptical coordinates is 

~ ]L(cosh2 ¢ _cosZq),/z i¢--~- +,,-ff~-q , [271 

where i¢ and i, are unit vectors in the ~ and q directions, respectively. Furthermore, the kinematic 
condition at the moving boundary becomes 

( d~f d . f ~  
vf = L ( c o s h 2 ¢ f -  cos2r/f) I/2 i¢ -~- -k- i n dt ]" [28] 

The governing anisotropic flow equations have been scaled to shift the anisotropic effects from 
the pressure equation to a boundary condition, and a subsequent coordinate transformation has 
placed the problem in a natural elliptical coordinate system. Equations [23]-[25] coupled with [27] 
and [28] are now solved by two approximate methods. 

Numerical solution 

In problems involving geometrically irregular boundaries, the finite element numerical technique 
is widely used. With respect to flow in porous media, this method is routinely applied to moving 
boundary problems in subsurface hydrology and petroleum engineering (e.g. Conner & Brebbia 
1976; Pinder & Gray 1977). Generally, the problem is solved by considering the transient solution 
to be a sequence of steady-state solutions separated by small time increments. After solving the 
problem for an initial boundary condition, pressure gradients at the interface are evaluated and 
used to propagate the interface to the next time step. The propagation step may be explicit in the 
current boundary or implicit, requiring iteration to find the new boundary. The procedure of 
solving a steady-state problem and propagating the interface is continued until a specified time is 
reached or steady conditions prevail. 
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Figure 2. Elliptical coordinate system. 

Galerkin's method of  weighted residuals was used to obtain a numerical solution to the 
anisotropic flow problem. Triangular elements with linear basis functions covered the solution 
domain, 0 < r / <  x/2 and G0 < ~ < ~r(r/). To take advantage of  problem symmetry only a quarter 
of the full domain was used with the aP'/dt  1 = 0 symmetry condition at r /=  0 and ~/= rt/2. Nodal 
pressures were determined through a stationary, linear iteration of  the Gauss-Seidel type. With the 
pressure distribution of the previous time step as an initial guess to the iteration procedure, the 
solution of the system of equations always converged within 10 iterations to a nodal pressure 
accuracy of  10 -5 . Forward difference approximations for the derivatives in [28] were used to 
advance the liquid front with three different dimensionless time increments, A¢,  to reflect the 
variation of  interfacial pressure gradients encountered. Near the inlet hole, where 0 < ¢ < 0.1 and 
the pressure gradient is the largest, the time increment was 0.001. In the intermediate region, 
0.1 < ¢ < 1.0, and the remainder, ¢ > 1.0, the time increments were 0.01 and 0.05, respectively. 
Fronts were propagated until • = 100. In all cases, ¢ is defined as in the isotropic solution, but 
based on kl, the maximum in-plane principal permeability. 

Numerical solutions were obtained for ~ in the range 0.1-0.9. For all degrees of anisotropy 
considered, the solution domain was discretized into 80 elements and 54 nodes. For ~ = 0.1, 
16 element, 15 node and 162 element, 100 node solutions were also calculated to evaluate the 
accuracy of the solution. 

Table 1 shows numerical data obtained for ct = 0.1 and the three different mesh configurations. 
The results are presented as frontal elliptical and dimensionless radial extents in the principal flow 

Table 1. Convergence of a finite element solution, 
ct =0.I 

¢ N ~fl ~r2 P, Pf2 

1 15 0.7267 0.9083 2.377 1.368 
54 0.7276 0.9043 2.380 1.364 

100 0.7279 0.9029 2.382 1.362 

10 15 1.290 1.413 5.036 2.064 
54 1.295 1.407 5.066 2.053 

100 1.297 1.405 5.077 2.049 

50 15 1.834 1.896 9.149 3.230 
54 1.839 1.891 9.197 3.214 

100 1.841 1.889 9.216 3.208 

100 15 2.090 2.133 11.94 4.060 
54 2.094 2.129 11.99 4.044 

100 2.096 2.127 12.01 4.036 



RADIAL ENCROACHMENT OF A LIQUID INTO POROUS MEDIA 209 

directions. Because the change in the solution as the number of nodes and elements is increased 
is small, further mesh refinements are unwarranted and 54 node solutions are presented for further 
analysis. 

Contour plots for • = 0.9, 0.5 and 0.1 are shown in figure 3. As ct decreases, there is a significant 
increase in the eccentricity of the fluid front. For a given dimensionless time, changes in the radial 
extent of principal direction 1 with degree of anisotropy are slight, while there are large changes 
in the radial extent of principal direction 2. Plotted as Pfl and Pf2 vs • in figure 4, the same effect 
is evident. Deviations of the Pf2 curves from the in-plane isotropic case, • = 1.0, are much smaller 
than the corresponding deviations of Pfl. As expected, the rate of movement of the fluid front is 
initially high then decreases monotonically as more of the porous medium is filled and the resistance 
to fluid flow is increased. The results of these numerical solutions show that the shape of the 
advancing fluid front is a sensitive indicator of the degree of in-plane anisotropy and that the 
absolute rate of fluid movement is determined by the combination of variables that form ~. 

Since the anisotropic problem was solved in its natural coordinate system, one might expect that 
the t/-dependence of the moving boundary would be small. Indeed, the data in table 1 reveal large 
differences between Pfl and Pf2 for a given • but much smaller differences between Gf~ and Gr2, 
particularly for large ~.  To assess the relative contributions of driving pressure in the G and r/ 
directions, the maximum value of [~P'/d~l I/[~P'/dGI at the moving boundary was determined as 
part of the solution. The location of the maximum ratio varied with ~ and was a finite distance 
from the inlet hole. As shown in figure 5, the maximum ratio increases as ct becomes small, 
indicating that more r/-dependence is introduced as the anisotropy increases, In all cases, however, 
the ratio is <0.1. 

Analytical approximation 
If  the r/-component of the pressure gradient in the governing equations is neglected, the equations 

are reduced to form that has an analytical solution. We know that the solution will have the correct 
zero-time limit and we expect that it will also have the correct long-time limit as details of the inlet 
hole shape become unimportant at long distances. In the long-time limit, the fluid front is elliptical 
and the pressure distribution reduces to 

Gf- G 
P'(G) = Gr- G0" [29] 

Therefore, the pressure gradient driving the flow is constant throughout the fluid at 

dP '  - 1 
d~ - Gf-- GO [301 

Using [29] and [30] as the basis for the approximation, [27] gives the approximate superficial fluid 
velocity at the interface, 

/~AP l 
v°¢l¢f =/2L (cosh2~f - cos2t])l/2 (Gf - -  G0) '  [31] 

The r/-dependence of the superficial fluid velocity simply indicates that the solution is not exact. 
Combining [31] with the kinematic boundary condition, [28], yields a dimensionless differential 
equation predicting the  time evolution of the moving boundary: 

d--~ = ~ (~r-  ¢0)(cosh2~r- cos2t/ ' 

with the initial condition 

The solution is 
Gf=~0 at ~ = 0 .  [33] 

4 [c°sh(2G°)-c°sh(2Gr)] (G2-G~) ( ~ ) ~  
8 + ~ = ~ . [34] 

I ' ~  2 _~] c°s2rt (¢r- ¢0)2 
F ( ~ f ,  t / )  = ( G f -  G0) sin Gf) + _ 2 
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Figure 3. Radial flow contour  plots for: (a) ct = 0.9; (b) ct = 0.5; (c) ct = 0.1. 
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Figure 4. e-dependence of dimensionless principal flow direction radial extents. 

In the limit of long times, Cf becomes large compared to C0 and the hyperbolic terms of [34] 
become dominant and yield the long-time asymptote, 

Cfsinh(2Cf) ( 0t ) ~  
4 = ~ • [35] 

As evidenced by [35], the flow front at long times is elliptical and independent of inlet hole shape 
(C0). In-plane anisotropy serves only to modify the time required to reach a given shape. 

Comparison of solutions 
Table 2 compares the 54 node finite element solution with the analytic approximation given by 

[34]. The error associated with the approximation is < 1% for the range of anisotropies considered 
and decreases as ct increases. The close correspondence between the solutions is readily apparent 
in figure 6, where the solutions are plotted for ct = 0.1, the largest anisotropy considered. The 
analytic approximation slightly underpredicts the maximum radial extent and overpredicts the 
minimum radial extent. 
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Figure 5. Ratio of pressure gradient components as a function of  degree of anisotropy. 
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Table 2. Compar ison of  a finite element solution with an analytic approximation 

~fl ~ f 2  

N = 54 Equation [34] %Diff. N = 54 Equation [34] %Diff. 

0.1 1 0.7276 0.7246 0.41 0.9043 0.9122 0.87 
10 1.295 1.284 0.85 1.407 1.420 0.92 
50 1.839 1.828 0.60 1.891 1.902 0.58 

100 2.094 2.086 0.38 2.129 2.138 0.42 

0.5 1 1.565 1.562 0.12 1.620 1.621 0.06 
I0 2.235 2.230 0.22 2.258 2.261 0.13 
50 2.809 2.806 O. 11 2.818 2.820 0.07 

I00 3.074 3.072 0.06 3.080 3.081 0.03 

0.9 1 2.605 2.603 0.08 2.612 2.611 0.04 
10 3.290 3.288 0.06 3.293 3.292 0.03 
50 3.872 3.871 0.03 3.873 3.872 0.03 

100 4.140 4.139 0.02 4.141 4.140 0.02 

The error in the approximation appears to go through a maximum at some position away from 
the inlet hole, consistent with the r/-dependence generated by the analytic approximation. 

obtained from [34], 

d~f  ¢ _ c o s  r / s i n  q (~o - ~f)  [361 
dr/ c o s h 2 ~ f -  C O S 2 ~ /  ' 

is identically zero at the inlet boundary where ~f = ~0 and, consistent with the long-time asymptote, 
tends to zero as if becomes large. The frontal position associated with the maximum value of 
this derivative roughly corresponds with the position of the maximum error in the analytic 
approximation. 

A P P L I C A T I O N  

Since the analytic solution represents a good approximation over the range of anisotropies 
considered, it may be used to determine directional permeabilities from a radial encroachment 
experiment. While it is also possible to use the more accurate long-time asymptote in the analysis, 
it is not experimentally practical due to the need for large samples and long flow times. 

1© 
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Figure 6. Compar ison of  a finite element solution (N = 54) with an analytic approximation,  [34], for 
a =0 .1 .  
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For nearly elliptical flow fronts, experimental data are easily gathered in the principal flow 
directions as Rr~(t) and Rf2(t) (Adams et al. 1986). The analysis is iterative in the degree of  
anisotropy. First 0t is guessed and Rft and Rr2 data are converted to equivalent elliptical extents, 
~rl and ¢f:, using 

FR,, (1)-,,=] err = sinh-' L-~- \ ~  - 1 [37] 

and 

~f2 = c o s h - I  [ _ ~  ( 1 __ ~)-1/2]. [38] 

Subsequently, the 1.h.s. of [34], F ( ~ f ,  r/),  is  evaluated for each elliptical extent, using r /=  n/2 and 
~/= 0 for principal directions 1 and 2, respectively. The data are then plotted a s  F ( ~ f ,  r/)  VS t and 
the best-fit line obtained. If ct is not chosen correctly, the data will not correlate well with the 
least-squares line. The optimum a minimizes the square of the deviations of the data from the 
best-fit line. The square of the deviations is unimodal in ~t and the search procedure is conveniently 
performed on a microcomputer. When the minimum is located, the slope of the best-fit line, 

k l A P  f a "l 
m¢ = e--~o ~-i~-~_ ~ ) ,  [39] 

yields k~ and k2 provided that the driving pressure, porosity and fluid viscosity are known. If kl 
and k2 are the effective permeabilities defined by [4] and [5], the orientation of the principal 
coordinate system with respect to the in-plane coordinate system and one of the principal 
permeabilities must be known to quantify the other two principal permeabilities. 

As an example of the analysis, consider the anisotropic flow data of a typical screening fabric 
given in Table 3. Structural properties of the fabric and details of the data acquisition are given 
elsewhere (Adams & Rebenfeld 1987). The 0t which minimized the square of the deviations was 
0.740, yielding a correlation coefficient > 0.99. Figure 7 illustrates the corresponding anisotropic 
data plot. 

C O N C L U S I O N  

The radial encroachment of a liquid into a homogeneous, planar porous medium can be 
described by an approximate analytic solution to the equations describing the flow process provided 

Table 3. Experimental data for an anisotropic screening 
fabric 

Principal direction I 
t(s) Pft ~fl(~ = 0.74) F(~fl , 7~/2) 

0 2.0 1.93 1.7 
55 3.0 2.33 8.0 

150 4.0 2.61 20.0 
318 5.0 2.83 38.6 
522 6.0 3.01 64.3 
768 7.0 3.17 97.8 

11 04 8.0 3.30 139.4 

Principal direction 2 
t(s) Pf2 ~f2(ct = 0.74) F(~f2, 0) 

13 2.0 2.04 2.6 
105 3.0 2.46 11.8 
250 4.0 2.75 29.5 
471 5.0 2.97 56.6 
768 6.0 3.16 94.1 

1140 7.0 3.31 142.6 
1548 8.0 3.45 202.8 

AP = 2.0 x 104 Pa; # = 14.5 Pa.s ;  R o = 5.0 × 10 -3 m; 
E = 0.647; ~ = 0.740; me = 0.128 s - l ;  r = 0.999; 
k l = 5 . 2 7 x  10 - t °m 2 (534 darcy); k 2 = 3 . 9 0 x  10-1°m 2 
(395 darcy). 
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Figure 7. Example anisotropic data plot. 

the angular component of the pressure gradient in an elliptical coordinate system is small. If one 
of the principal flow directions is perpendicular to the flow plane, the principal in-plane 
permeabilities and the degree of in-plane anisotropy are extracted from frontal movement in the 
two principal flow directions by analyzing experimental data in accordance with the approximate 
solution. If the direction perpendicular to the flow plane is not a principal flow direction, the 
analysis yields effective permeabilities that are functions of the principal permeabilities and the 
orientation of the principal coordinate system. This technique to measure permeabilities requires 
just a single test specimen and a single, well-characterized experiment. 
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